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ABSTRACT •

The injection or ascent guidance system_ that will be used for

space vehie]es in the next few .years wiU not have su/_cient accuracy

for advanced lunar or interplanetary missions. It will be necessary to

have some form of mid-course guidance in order to reduce terminal

dispersions.

This Report is concerned with a specific mid-course guidance scheme

which utilizes a small rocket motor mounted on the spacecraft for small

impulse-D2_e corrections. Magnitude and directions of the correcting

impulse is computed on the ground from radio tracking measurements,

and appropriate commands are transmitted to the probe. The Report

first developed the mat_ematic'al theory of mid-course guidance. Ter-

minal coordinates are discussed, the concept of the critical plane is

introdaced, and the exact computation of the maneuver is covered in

addition to the method of estimating the required amount of rocket

propellant. A thoroug}, error analysis of the mid-course guidance sys-

tem is presented. The effects of pointing and shut-off errors of the

rocket motor are determined. A detailed study is made of the errors

associated with the computation of the mid-course co_ection from

the noisy tracldng data. The theon, is applied in representative cases,

and many numerical results axe shown. "

v! f
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I. INTRODUCTION

The injection or ascent guidance systen'L_ that will be

used for space vehicles in the next few years will not

have sufficient accuracy for advanced lunar or inter-

planetary missions. Some form of post-inject/on guidance
will be necessary to reduce the dispersion at the destina-

tion; such guidance may be accomplished by means of

self-contained systems or with Earth-based measurements.

The accuracy of self-contained systems tends to

improve in the vicinity, of the destination, and such sys-
tems are not susceptible to hostile "jamming." However,

the equipment in the spacecraft is much simpler in the

case of Earth-based guidance systems, and jamming is
not considered a menace to NA.C._ space vehicles. Fur-

thermore, long-term studies at the Jet Propulsion Labora-

tory (JPL) have revealed that a system of mid-course

guidance based on radio measurements and command

can provide surprising accuracy for both lunar and

planetary missions. Such radio-command guidance also

takes advantage of the complex of deep-space tracking

sites that .,re being set up in California, Australia, and

Africa. Such guidance (with relatively simple payload

equipment) has, therefore, been chosen for later space-
craft in the Ranger program both for the Moon and

for the planets.

This Report first develops _e theoretical structure of

m/d-course guidance. Ter':.,tinal coordinates are discussed,
the concept of the cr'dcal plane is introduc=d, and the

exact computation ."c the maneuver is cov,'.red in add/-

tion to the method of estimating the required amount of

rocket pr,_pellant. In considering the errors of a mid-
course guidance system, a detailed study has been made

of the errors associated with the computati(m of the orbit

(prior to the maneuver). Radar tracking data are con-
taminated with noise, which naturally degrades the

precision of the orbit determination. The method of

determining the orbit is outlined, followed by the error

analyses that have been applied.

Finally, systems of mechanization are discussed and a
number of representative results presented (e.g., the

required maneuver for a given injection-guidance system

and the accuracy that can be anticipated at the Moon,

Mars, and Venus).

II. THEORY OF MID-COURSE MANEUVERS

A. Guidance Equations

At this point, it is convenient to assume that the actual

trajectory followed by a vehicle differs only slightly
from some precaleulated standard trajectory. Linear

perturbation theory may then be applied to all calcula-

tions dealing with coordinate variations and small

velocity increments (for correcting the trajectory).
Although for most purposes the approximations of linear

pe,-turbations are good, the theory is invoked more as a
convenience than as a nec_sary step in the calculations.

The theory is used to carD' out First-order analyses but,

where necessary, iterative proc_<lures should be used to

refine the approximations.

If a probe reaches the desired destination point at a

given time t2 on the ideal or standard trajectory, then,

because of injection errors, the probe will generally not

reach the .same point at time t: on an actual trajectory
unless some correction is applied. Let the ditieretme in

the coordinates of position on the standard and the actual

trajectory (in the absence of a correction) be _x, Sy, and
$z at time h. It is shown in Appendix A that, in order to

correct the trajectory by applying a velocity impulse with

components V,, V v, and 11, at some previous time t,,

8y =-n v, 0)

8z i, L Vz.jr,

where H is a 3 × 3 matzix, the ele_rnentsof wbich cad be

determined from computation: on the standard trajectory

for any given t, and t:. Components 8x, 8g, and Sz at time

t, can be computed indirectly from measured data; thus,
the three velocity, components necessary for the correc-

tion of the trajectory are determined by Eq. 1. This
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would, however, guide the space probe to intercept a

given (moving) point in space at the given time t2. The

latter restriction wou]d often be unnecessary, since small

variations in the flight time may be permissible.

In order to allow variations of flight time, a new set of

rectangular axes is taken (Fig. 1), centered at the probe

position at time t: on the standard trajectory. The new
axes are defined by the unit base vectors e,, e:, and e,,

where e, lies along the probe velocity vector at time t: on
the standard trajectory. Since e: is in the a_j-plane and per-

pendieular to e_ and e,, it completes the set of mutually

perpendicular base vectors. If, then, 8R is the vector dis-
placement corresponding to 8x, Sp, and Sz at time h,

three new miss components may be defined:

iV1, = e,. 8R, NI. = q • _R, M, = e. • 8R (2)

Assuming thaL as a first-order approximation, perturbed

trajectories have the same velocity direction at time t_,

then M, and M: are the miss components at some time

dLfferent from t,, and M, is associated only with time-of-

flight variations. Thus,

rM,l rs l
L ,J =L,,-:,,J[ '/J,,

where (l, ,._.,, n_,_ and (/_, m_, n_) are the direction cosines

of e, and e:, respectively. Indicating the 2 X 3 matrix of

Eq. 3 by N, Eq. 1 can be modilled to

<,>
L .J LV,J,,

I where Mt and M: are the miss components perpendicular

to the terminal velocity vector (on the standard tra-

jectory). Other terminal coordinates may, however, be

Z

ASYMPTOTE OF ./

_ ASYMPOTE)

"(T_EFti_EyI_oCTUCpJ C_'_TER OF _

/ DESTINATION BODY

T B-R AND B-T • MISS COMPONENTS

Figure 2. Definition of miss components B'R and B-T.

appropriate to certai_ missions. For example, if the object

of the mission is to impact the Moon at a given spot with

a given speed, then it wo;_.ld be logical to choose act'ual
surface miss components and speed at l,:nar impact. Such
coordinates are not, however, defined for trajectories

which miss the Moon; this difficulty may be overcome by

defining impact as the i, tersection with the plane which
is tangential to the Moon at the standard impact point.

Such coordinates approach the true impact coordinates

for small perturbations.

The terminal coordinates discussed above are linear

functions of small perturbations applied at some earlier

point in the trajectory. However, as a result of the attrac,-

t'ion of the destination body (e.g., the Moon), departures
from linearity occur with large perturbations. For this
reason, another set of terminal coordinates has been

introduced (Bd. 1) and used extensively at JPL, since

they are __inear for wide ranges of perturbation variables.

They are defined in Fig. 2. Three mutually perpendicu-
lar base vectors (R, S, and T), are chosen such that $ is

parallel to the asymptote of the approach hyperbola.
Vector T is chosen, for convenience, in the x!t-plane of

the trajectory computation, and R then completes the

right-handed orthogonal system of axes. Vector B is the

perpendicular from the center of the attracting body tO

the asymptote, and the two miss component_ are defined

as M, = B • Band _,l, = B • 7". Beturning to Eq. 4, M_ and

M: will henceforth denote miss components in general,

but the reader must recognize the fact that the choice of

such coordinates will depend on the particular mission

and calculation. Equation 4 is, in fact, two equations,

which must be satisfied by the three velocity components

(V,, V,, and V,) L_ order that the trajectory, be corrected

/
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to pass through the desired end point at some unspecified
time.

The three components have to satisfy only two equa-

tions. There is one degree of redundancy, which_ may be
used for one of the following:

(1) To minimize the magnitud, • of the correction

(2) To apply a geometrical (x ,_aint to the maneuver

for the sake of practical convenience

(3) To control an additional destination variable such
as speed or time of arrival

In the first case, let

_H = K = [_.] (5)

It is shown in Appendix B that the magnitude of V,, V,,
and V, is a minimum when

K_, V,, + K,, V, + K,,V, = 0 (6)

where K,_ is th,: eofactor of the element k,j.

Equation 6 defines a plane which always contains the

correcting velocity vector when applied at a given time
t,. The plane is independent of injection errors. It may

be referred to as the most efficient or critical plane, the
normal to that plane" being the non-critical direction. The

latter depends on the trajectory, and the maneuver time
along the trajectm3,.

A typical situation is illustrated in Fig. 3, where the

loci of the vcl(x-ib" vector (relative to the Earth) and

the non-critical direction are plotted on a celestial sphere
for different times after injection into a 66-hr lunar orbit.

In practice, it may not be convenient to apply the cor-
rection in the critical plane. Referring to option (2) above,

the correction might be restricted to a plane perpendicu-
lar to the probe-Sun axis. With a rocket mounted at

right angles to that axis, one face of the spacecraft

(carrying solar panels) need not then be turned away
from the Sun during the mid-course maneuvea.

When the ro<-ket thrust vector is restricted to a plane,
critical or otherwise, the velocity components would sat-
isfy an equation of the form

,V, + bV, + oF. = 0 (7)

in addition to Eq. 4. To calculate the velocity com-
Ixments. a 3 X 3 matrix is formed from the 2 × 3 matrix

NH and a, b, and c of Eq. 7:

P being a 3 X 3 matrix. Then,

M,I r,'.l
-" IV./ (9)

oj LF, J

......... VELOCITY VECTOR (R1ELL'In_f_, TO _Ti_

N ON-CRIT ICJI¢. DI RECTIGIll
"rIME-CRITICAL IDI RECTIO_I

{66-hr LUNAR IMPACT TR.,C,.I_CTOI_ffJ}

Figure 3. Vectors relevant to the cm_l]tsls If
single-impulse mid-course mmcmc,_m

and

V,

which represents three equations _-ing the velocity
:nponents (subject to a constraint) in terms of miss

(x_mponents Mt and M=. The latter _ be obtained

from the computed orbit according to the measan-ed data

Taking advantage of the degree o_ _ rc.vealed

in Eq. 4, the third option would be to ocaatrol some addi-

tional terminal variable, e.g_ flight t2m_ or speed of
arrival. Thus a 3 × 3 matrix K" of diff_ coeffaeients

can be found, such that

r, =-K" I', (it)
Lv.J

where S indicates the variation in the speed olr arrival.

(The calculations are also the same for -.'ariaticaas in flight
time.) The three velocity components are then uniquely
defined by

v. = -(Jr.)-, , : 0_)
V,

,,b3 /O
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and for random errors in the three terminal variables, the

variable-impulse mid-course rocket may have to be fixed
in any direction.

It will be observed that the fldrd row of Eq. 11 would
read:

$orAT = -k's_V,-k'a.V,-k'sV: (13)

depending on whether speed or flight time was being cor-
rected. It follows that if a maneuver were made in the

plane defined by

k;, v, + k;2v, + k.'.,v: = 0 (14)

then the third terminal coordinate (e.g., speed or flight
time) would be unaffected. It also follows that the direc-

tion defined by the components (k_,, k[z, and k',2) is the

most efficient direction for correcting the third terminal
coordinate, hence the term "time-critical direction"

(plotted in Fig. 3). As the time-critical direction ap-

proaches the critical plane of miss components, it becomes

impossible to eorteet for miss and flight time, since the

K" matrix of Eq. 12 approaches singularity. This situa-

tion may be observed near injection in Fig. 3.

B. Calculation of Differenfial Coefficients

The matrices NH and K" referred to above are com-

posed of. differential coefficients which relate velocity

perturbations at the maneuver point to resulting pertur-

bations in the terminal coordinates; other coefficients

must also be introduced. Although the choice of terminal

coordinates has been discussed, ne mention has so far

been made of the method of calculating such coefficients.

Several possibl'= methods exist:

(1) Direct c,?mputatiJn of perturbed trajectories

(2) Solution of the differential equations satisfied by
the differential coe_cients

(3) Solution of the adjoint equations

(4) Analytical calculation from conic formulas

Method (1) has been used extensively at JPL. In order

to compute n coefficients, one standard and n perturbed

trajectories must be computed (invariably on an auto-

matic computer). Differential coefficients such as

(?M1)/(3V,) are then approximated by (AM1)/(AV,).

The procedure is simple to apply and, with additional

perturbed trajectories, permits a cheek on the validity

of first-order approximations. The choice of the size of

the increments is important since, ff the increments are

too large, nonlinear effects appear, and if the increments

are too small then errors in the trajectory oomputation
become serimls.

4

In setting up the equations for maehine-eompntation

of trajectories, it is easy to include the differential equa-
tions which the differential coefficients themselves must

satisfy. The coefficients can then be printed out dur/ng

the computation of the trajectory itself (Ref. 2). Once

such equations are prog:'ammed, this method (now being

employed at JPL) is evidently very fasL although no
check on .linearity is possible.

A similar method is solution of the adjoint equations

(Eel. 3). The differential equations of perturbed trajec-
tories are set up as six simultaneous first-order linear

equations. By transposing the matrix of this set of equa-

tions, another set of six equations (the adjoint set) is

derived. Numerical integr_,tion of the new set then gives

the differential coefficients along the trajectory. Although

the functions which form the coefficients of the adjoint

equations are available from the ordinary trajectory com-

putation, the method is inconvenient, since the integra-

tion of the adjoint equatiot,s has to be in reverse time;,

i.e., integration starts from the end of the trajectory.

Method (3) has been used only experimentally at JpL

With reference to Method (4), trajectories can be ap-

proximated by parts of more than one conic. For exam-

pie, a lunar trajectory can be approximated for most of

the flight by an ellipse or h>q_erbola relative to the Earth;

within 40,000 mi of the Moon, the trajectory approaches

a h)_erbola relative to the Moon. Since perturbation

coefficients can be deduced analytically for such orbits,

the required differential coefficients may be obtained by

appropriate combinations of the coe_cients calculated

on the separate conies. So far, this technique has been

utilized merely to provide approximate coefficients, but

refined methods of calculation are being developed.

C. In-FligM Calculafions of the Mid-Course
Maneuver

The calculation of the mid-course maneuver to a first

order of approximation/s given in Eq. 10 or 12. However,

ff nothing more than such equations were used to com-

pute the required maneuver, then the over-all aeenracy

of the guidance system would be degraded unnecessarily.

It is proposed to refine the computation of the following

iterative procedure:

v, = v, +(K')-, , 0_)
V..., V: .

with a similar expression in the case in which only miss

components are to be corrected.

//
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For the first iteraiion, M,, M,, and S would be obtained

from the best estimate of the actual trajectory from track-

ing data (Part IIl). The first estimate of the maneuver
would be

v, = o +(K,)-.M. 06)
V, I 0 , L$ o

The trajectory would then be rerun from the maneuver

point with the modified velocity components, the residual

values of M. M:, and S from the trajectory being sub-
stituted into

= v, (17)

the second estimate of the maneuver. This procedure
would continue until the residual terminal coordinates

were acceptably small (e.g., 2-mi miss at the Moon).

Ahhough strictly speaking, the elements of the K'

matrix should be recomputed for each iteration, pre-

liminaxy studies have indicated that it will often be sut_-

ciently accurate to apply the K" matrix of the standard

trajectory.

D. Statistical Calculation of the Required "
Maneuver

Since the magnitude of the mid-course maneuver

depends on the injection errors and the latter are

described statistically, a statistical calculation is neces-

sa D ' in order to estimate the required amount of rocket

pr_Jpellant for the mid-course rocket. The calculation is

given below h_r the case in which only the miss com-

ponents are corrected, although it is carried out in the

same manner if an additional term;hal coordinate is

controlled.

From Eq. 4 and 5,

M: [v.]-K V,
V.

(is)

If the maneuver is restricted to a plane and the two per-

pendicular velocity components in that plane are u, and

u. then an orthogonal matrix C can be found, such that

["]r-1V, = G _ (19)
V: L #, A

u, being the c_)mponent normal to the plane and postu-
lated to be zero.

Hen¢_,

o¢

= -KG
M:

(2o)

1-31,1
L ,j= -Q[:;] (2,)

where Q is obtained from KC by simply omit-I_g the
third column.

Now, let 8X be a 6 X 1 matrix of the six injection

errors; then, the resulting miss components axe given by

= l_SX (22)
Alz

where the 2 X 6 matrix _V is composed of differentia]
coe_cients relating injection to terminal coordinates. I_

_ and u: are to correct such injection deviations,

rL":"]=Q-'k-,sx (23)

and by multiplying each side of F_.q. 23 by its transpose,

Let the six injection errors 8X now be considered as

random variables; the ensemble average of E,q. 0-4 is

['_'_ =Q-'IV(_XSX'r)tVrQ-rr(2,)u_..u,

But $X*X r'= A is, in fact, the moment matrix of injec-

tion errors; it gives the variances and covariances of those
errors and would be calculated (Be[. 4) from the form of

the injection guidance system. Therefore,

[ "i '''']=Q-_FFAIgzrQ-tr_x'_-_/ (26)

and the mean-squared value of the mid-course maneuver
is

u= = _,_+ _:_ = #_ + ,__ (27)

i.e., the sum of the two diagonal terms of the ma_-ix on

the fight side of equation (26).

Now, although u_ and u, satisfy a joint gaussian dis-

tribution [assuming that the injection errors satisfy a

six-dimensional gaussian distribution (Ref. 4)], the dis-

tribution of I_ ui' + u_. is not gaussian. The calculation of

the probabilit3,-densi W function of the magnitude of the

maneuver is given in Appendix C (and the functions are

plotted in Fig. C-l). It is shown that, _n order to cope with

B
/#-
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99 per cent of all cases, the maneuver mhst be N times

the rms value (from Eq. 27), where N is a function of

the ratio of the major to m_,or axes of. the dispersion

ellipse of velocity comlxments in the (u, u=) plane. The
calculations are given in Appendix C aud some values for
N are given in Table 1.

Tab!e 1. Mid-course maneuver for 99% of all cases

Ratio of molar to minor axis

of uj_ dispersion ellipse

N, ratio ef requirtd monevv_r

to I'l_l _at'_l/VOll'

| 2.14

3 2.52

10 2.58

E. Error Analysc_ of AUd-Course Guidance Systems

"]'he sources of error in a mid-course guidance system
are as fonows:

(1) The orbit is not detexmined perfectly from radio
tracking.

(2) Angular errors are introduced in pointing the mid-
course rocket.

(3) The magnitude of the maneuver is in error.

Th,- precision of orbit determination based upon radio
tracking is discussed fully in Part III; only the sexxmd
and third sources of error are therefore considered here.
In the case in which a mid-course maneuver corrects

terminal miss components and speed, Eq. 11 applies. It
is, however, convenient to use a rotation matrix C to

transform the components (V,, V,, and V,) to the orthog-
anal set (u,, u_, and u_), where u, lies along the non-
oitical direction. Thug

, = -- (K'G) _, (28)
/4 a

The coordinates V, 2, and v/are introduced, defined by

_ = Vcostcos n

r_t = Vcostsin_ (29)

wa = V sin t

The errors _M,, 8M,, and 8S due to erro= 8V, 8¢, and

_ are given by

let

p,, .,. 0](r,a) = I" ""
L an as, as,

(a,, and a_3 are zero, sinee uj is the ncn-cr/tical direction.)
Then, the equation for 8M_ is

8/tll = -- (--a,t sin tcos 17-- '*lz sin t sin n) Vat

- (--,,costsinn +_,,costcos_)VS,i (32)

- (a,_cos _cos _ + at, cos t sin t;) 8V

The quantity SM_ is required where the errors _V, at, and
$,_ are random variable_

The rigorous analysis is beyond the scope of this Report;
instead, in order to arrive at a tractable solution, some

crude averaging procedures are applied; viz., V is treated

as a constant equal to the average magnitude of the

maneuver, and SV, St, and $,_ are treated as uncorrelated

errors. The approximation of a maneuver equally likely

in any direction is also introduced. With such approxi-

mations, and after some manipulation of Eq. 32 and the

corresponding equations for _M, and 8S,

_,_, + aM,_= x, (_v,+ v, _¢, + v,_,_,). (_)

where

where

_lab + al, + ag, + a_A
4

! m n

"I,+ ,d,,+ 2,d,_" = 4 = & (_6)

C+-h (_)/_e= 4

The analysis is carried out similarly, when only the

miss components are corrected.

In addition to errors in applying the maneuver, one

other kind of terminal dispersion is of interest. If only

the miss components are corrected, flight-time or speed

variations occur, not only due to injection errors but as
a result of t_e mid-course maneuver itself. The caleula-

Lion of such variations is given below, the analysis being

exactly the same in case of speed variations.

Let u, and u, be the velocity components in the plane

used for correcting only miss components (F_,q, 9-1) and

$X the 6 >¢ I matrix of injection errors (Eq. 22).
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Let AT' be thc flight-time variation due to injection

errors; then,

M, =+ -_ 8x (39)
AT'

where W, is a "1 × 6 matrix. Let AT" be the flight-time

variation due to the maneuver itself:

[.} <.o,_T"=-Q_ xz

III. ORBIT DETERMINATION

A. Summary

In the radio-command mid-course guidance system,

radio tracking stations at several locations on the Earth

track the spacecraft along its orbit, measuring quantities
such as doppler shift and tracking angles. Measurements
from different stations are transmitted to a central com-

puting facility which determines the orbit that fits the
measured data with the least-square error. This coasting

orbit can be completely specified by six coordinates at a

given time (for example, three components of position
and three components of velocity at nominal injection

time). From the measured orbit, the central computer
determines the mid-course impulse required to correct

quantities such as miss components and t'_me of flight at

the target. Appropriate attitude and velocity increment
commands are then transmitted to the spacecraft from

one of the tracking sites. Tracking continues after the
maneuver, since the orbit must be redetermined for

.=:valuation purposes, scientific experiments, and possibly
a tetra-maneuver.

It.can be seen that the radio tracking system and cen-

tral computer effectively close the loop in this guidance
system. As in all closed-loop systems, the measurements

of the controlled quantities are contaminated by noise.

For example, angle-tracking data are subject to random
errors due to receiver noise, which causes jitter in the

anfenna servos. Although only a few radio measurements
are sufficient to determine an orbit, the accuracy of the

orbit determination is greatly improved by appropriately
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where Q, is a 1 X 2 matrix. Then the total flight-time

change k

But

,,,] F,u,'l,,, : Q- [.,.j (42)

= Q-_ IVSX

Therefore,

AT =
and

AT • =

" where A is the

(_', - Q, Q-, 1¢,)8x

(i_', - Q, Q-, l_') ^ (ll%- Q, Q-, I¢,)," (,13)

moment matrix of injection errors (Eq. 25).

FROM RADIO MEASUREMENTS

smoothing a large number of data points from di/ferent
sites. For error analysis of the mid-course guidance syr_-

tern, it is necessary to find out how accurately the orbit
is determined from measured data. In this Part, the

tracking system and orbit-determination program are
described. The method of finding the accuracy of orbit

determination is develoI:_l, and representative results are

shog-a in the graphs. Also, the effect of changing various

parameters of the tracking system on the accuracy of orbit
determination is studied.

B. Tracking Sysfem

Most of the data for lunar and interplanetary orbit

determination v-ill be obtained from the NASA Deep

Space Net (Bef. 5). As presently planned, the tracking
net will consist of three tracking stations, spaced on the

Earth in such a way that a spacecraft which is at least
several Earth radii from the Earth will always be visible

from at least one station. It is planned that each station

will eventually include a high-gain directive receiving

antenna with accurate positioning ser_s, a sensitive low-
noise receiver, a transmitter, and a suitable antenna. Also,

there w'll be data processing equipment and facilities
for real-time communication of data to the NASA com-

puting and control center. The first Deep Spate Net

(DSN) station at Goldstone lake in California is opera-
tional at the present time. It is planned that the other
two stations will be located in South Africa and Australia

and will be- operational in 1963 and 1964, respectively.
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The Goldstone tracking station, which was used in

tracking Pioneer/V, i_ a prototype of the other DSN sta-

tions. The tracking equipment at Goldstone is described

in detail in Ref. 6. The receiving antenna is a polar-
mounted, 85-ft-diameter, parabolic reflector, which was

originally designed for radio-astronomy research. The

antenna is equipped with an accurate servo-drive system

and uses simultaneous lobing for automatic tracking. The
receiver is a low-noise, 960-mc, narrow-band, phase-

tracking, double-conversion superheterodyne with a data
channel and two angle-error channels. A 10-kw UHF
transmitter with a similar 85-ft reflector but with an

azimuth-elevation mount is located several miles from

the receiver. Pioneer /V was tracked using a one-way
communication link consisting of a stable transmitter in

the probe and the Coldstone receiver. In order to improve
the doppler accuracy and provide a command link, future

communications will be two-way, employing the trans-
mitter and receiver at the tracking site and a transponder
in the spacecraft. The transponder receives the trans-
mitted wave from the DSN station and retransmits an

exact multiple of the received carrier frequency for
doppler measurements. Information is communicated to

and from the spacecraft by modulation of the carrier.

Hour angle, declination angle, and doppler shift are
obtained from the Goldstone site.

For accurate orbit determination, it is necessary to

obtain tracking data immediately after injection. Because

of the low injection altitude (300 mi) and because of high
angular tracking rates, the DSN stations are not able to

track at all desired injection points. For this reason, the

mobile station is located so as to observe the spacecraft
near injection.

The mobile station is similar to the Puerto Rico Down-

range Tracking Station used for tracking Pioneer IV.

Since the mobile station is designed for relatively short-

range communications (100,000 mi), its tracking equip-
ment is somewhat simpler than that of the DSN stations.
For example, the mobile station uses a 10-ft dish rather

than an 85-ft reflector. Elevation angle, azimuth angle,
and two-way dapple," are obtained from the mobile
station.

Although the computing center will rely primarily on

the DSN and mobile station, it is expected that data will

also be available _om other radio trackin_ stations. Also,
optical sightings (for example, from a Baker-Nunn satel-

lite camera) can provide very accurate position fixes

early in the trajectory by photographing the spacecraft
against a star background. However, such observations

are dependent on the weather, and the processing time
may be inconveniently long.

C. Orbit-Determination Program

The radio tracking data are transmitted from the track-

ing stations to the computing center, where they are
processed in the digital computer to determine the orbit

of the spacecraft. The JPL tracking and orbit-

determination program is described in detail in Bet. 2.

Appendix D contaim a derivation of some of the impor-
tant equations used in the program. It will be noted that

all of the computations are based on linear perturbation

theory (Ref. 2). The required accuracy_ is attained by

iterating on the linear solutions. Sir_ a large amount of
tracking data is obtained, some statistical estimation
method must be used to obtain the best orbit from the

redundant data. The program uses the maximum-

likelihood method for estimating the values of the six

parameters defining the coasting trajectory. The esti-

mated values of the injection conditions are corrected by

comparing predicted values of the radio tracking meas-
urements with the actual observed values.

The program accepts angle data (azimuth and eleva-

tion or hour-angle and declination), range-rate data, and
range data from a number of diferent stations. The com-

puter corrects the inpat data for systematic enors, such

as the refraction correction for angle data. It is assumed
that each type of data is contaminated with gaussian
noise, and that the noise is uncorrelated between stations

and data types. The weighting of the different data types
in determining the orbit can be adjusted according to

engineering estimates of their accuracy. As explained in
Appendix D, this weighting can also be used to take into

account time correlation in each t31_e of data. (When the

effect of time correlation is approximated in this way, the
method of-maximum likelihood becomes equivalent to '

the method of least-square error.) The program will also

solve for constant bias errors in each b'pe of data, but it
will be assumed here that the data are already corrected
for bias errors, and thus, the"nois¢ has zero mean.

As shown in Appendix D, an intermediate step in the
determination of the maximum-likelihood estimate of the

injection conditioas is the calculation of the noise moment

matrix of injection conditions 1-'. The 1-_ matrix can be

used to answer many questions concerning the effects of
radio tracking errors on the accuracy of mid-course

guidance and the requirements On the tracking net.
Specifically, the following problems can be studied:

(l) The quality of the estimates of miss components

and injection errors as a function of tracking time
after injection

(2) The required accuracy in measuring range rate and
tracking angles to satisfy the missi_m require=,'..ents
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(3) The desirability of measuring range and the re-

quired accuracy

(4) The relative contribution of different stations to

the orbit determination, and thus, the effect of a

station being inoperative due to equipment failure

(5) The effect of geographic location of a station on

the accuracy of the orbit determination

(6) The accuracy of the predicted acquisition coordi-
nates for different stations

(7) The re-establishment of the orbit after a mid-course
maneuver and before a subsequent maneuver, such
as an additional mid-course-maneuver or a retro-

maneuver.

The JPL orbit-determination program uses the follow-
ing set of Earth-fixed injection parameters:

• = radius from center of Earth, meters

= latitude, deg

0 = longitude, deg

v = velocity in coordinate system rotating at Earth's

rate, meters/see

_, = angle of velocity vector above local horizontal

plane, deg

= angle of projection of velocity vector on local hori-

zontal plane measured from North, deg

Thus, the noise moment matrix of the uncertainties in

the estimates of the six injection coordinates is (Eq. D-2,8,

Appendix D)

[0_,O _ p,,o_, p_ro_Or pcroro1, p,oo.aQ"

_r° pt,oto e pt_ntOr pct'/of_o'tptootoo

]-I m_ _ P,r°,°r Oe_°e°¥ P* o_e°o

_r Pr_r_ ' Pra°rau

Lsymmetrical ag

(44)

w.h el'e

.a = variance in the estimate of a certain initial con-
dition

e = correlation eoel_cient between estimates of two

initial conditions

It is useful to transform the ]" matrix to other coor-
dinates of more direct interest. Let

_,_t, _M, _M, ,_M, aM, _M,']

-w /w = _M. _M: _M. _M _M. _M, / (45)

be the matrix of differential coe/_eients which transforms

from injection perturbaUons to miss components M, and

3/, at the target. Then, the moment matrix of the uncer-

tainties in miss components is

_, ,_ /-- ,"_x. (w_x.),= w/-qr', (40

Setting the quadratic form equal to a constant _,

•gives the equation for equiprobability contours. Tt_r,e
contours are ellipses which contain 100 (1- e-_') pet

cent of all possible miss components. Often it is useful

to find the semimajor axis 3, and the semiminor axes of

the dispersion ellipse, which is done by diagonalizing
WJ-,Wr.

• D. Accuracy of Tracking Data

In order to calculate the accuracy of, orbit determina-
tion, it is necessary to make an estimate of the accuracy

of the tracking data from the DSN stations and the mobile

station. These estimates are used to weight the different
types of data in computing the 1-1 matrix. It is assumed

that the tracking data are corrected for all predictable

and measurable errors. An example of a predictable cor-
rection is that applied to tracking angles to compensate

for the standard refraction of the atmosphere. A measur-

able error is one which can be determined by calibrating
the equipment in various tests. An example of a measur-

able type of error is the misalignment between the mechan-
ical and electrical axes of the radio telescope antmma,

wlfich can be determined by boresighting to beacons. After

all predictable and measurable errors are removed, the
remaining errors are random with zero mean. Only the
random errors are considered in this Part. An example of

a random error is the error in tracking angles due to

thermal noise, in the receiver, which causes jitter in the

angle servos. With each random error, there is associated
a correlation interval or noise period, which can be

defined loosely as the smallest time interval over which

two samples of the nt, L,e are essentially independent. For
example, the angle jitter in the servos due to receiver

noise is t-_scntially independent over time intervals which

exceed the dominant time constant of the angle servos.

It can be seen that each type of tracking data from

each station can be contaminated by seve, al independent
noise sources. It is assumed that the noise from each

source can be specified by an idealized autocorrelation
function which has a value of o* for 0 < t < 1-and is zero

for t > T; o_ is the variance of the particular Idnd of noise,
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and _, is the time interval over which the noise is cor-

related. In other words, it is assumed that the noise is

perfectly correlated over any interval less than . and
uncorrelated over any interval greater than r. In addition,

it has been approximated that a_ does not vary with

range. Table 2 shows the assumed characteristics of the

noise in the data for the two types o[ stations.

Consider first the accuracy of the two-way doppler

measurements. The doppler frequency is approximately

V

t" = _" 7 Os)
where

1_ = doppler frequency, cps

/¢ = frequency transmitted by tracking station, eps

v = component of spacecraft velocity away from track-
ing station, meters/sac

,J = ratio of transmitted to received frequency in trans-
ponder

c = velocity of light, meters/sac

Substitutinga = 1,/_ = 960 me, and c = 3 × 10" meters/see

in Eq. 48, it is seen that one doppler cycle corresponds
to a velocity of 0.15 meters/see. It is assumed that the

doppler cycles are counted at the carrier frequency. If

the doppler frequency is counted for n sec, a one-cycle
roundoff error causes a random error of 1/n cps in fa, and

the corregponding velocity error is 0.15/n meters/see.

Howe_,er, as n increases, the error due to neglecting
derivatives of the spacecraft's acceleration also increases.

It /s estimated that the optimum duration for counting
doppler _'des is about 1 see. Anofl_r source of random

error m doppler measurements is the unpredictable time

variation of the refraction of the atraorphere and iono-
sphere. _The effeetive path length for the radio waves

depends on the index of refraction along the path in the

atmosphere. A changing index of refraction causes a
changing path length and, thus, produces a doppler shift

which is interpreted as a change in spacecraft velocity.

The changes in refraction are due to turbulence, changes
in water vapor concentration, etc.

During the round-trip transit time of a particular wave

train, the frequency of the transmitter may wander a
small amount flora its or/ginal value. This wander could

be caused, for example, by a mechanical sbnek or a slight
change in temperature of the frequency standard. The

frequency drift will be erroneously interpreted as a dop-

pler shift. It is estimated that all of these error sources will

contribute an rms velocity error of 0.15 meters/sec., as
shown in Table 2. The noise period is estimated to be
less than 10 see_

10

As shown in Table 2, there are three noise components
which contribute to angle error. The main cause of servo

jitter is equivalent thermal noise in the angle-error chan-
nels of the receiver. The thermal noise is due to random

motion of electrons in the se:=sitive reeetver and to energy

radiated from the Earth and sky. This broad-band thermal

noise is filtered by the angle servos, resulting in a noise
period of several seconds. The magnitudes of o and , for

this noise component are determined by direct meas-
urement. Random variations in the refraction of the

atmosphere and ionosphere cause noise in the angle

measurements. This effect is mlalogous to the t,,_-inkling
of v_,sible stars. The value of o is estimated to he 0.01 deg.

These estimates of servo and refraction noise agree rea-
sonably well with autocorrelation fimctions computed

from 2-hr segments of actual tracking data (Bef. 7).

The very low-frequency noise component is due to

structural deflections of the large tracking antenna. The

antenna and supporting structure are subject to deforma-

tions from varying wind loads and temperatures. As the

position of the reflector is changed, the strudture is sub-

jeered to varying gravity loads. The L_arings and struc-

ture undergo small iaelastic deflections. The magnitudes

of o and T for this type of error were estimated from

measurements of boresight error taken at 6-hr intervals

during a 6-day period. The length of T is so great for this

error that in some applications it would be regarded as a

bias error. The weighting of the angle data in the ]-'

matrix is determined largely by the low-frequency noise

component, because of the very. large value of T.

Table 2. Assumed noise characteristics

Station type Data type

Deep Spoce Net

Mobile (maxl-

mum tong0,

s0,000 m!}

range r_e,

melers/soc

decllnofion, deg

hourongle,deg

ron_ rote, " -

mol0r$/1_0¢

elevation on21%

dag

azimuth angle,

deg

roundotf 0.|5

¢hongihg.

_elroOioa

frequent',/

drill

ii.-- o.m
refroct_= 0.01

ordoRRO-

slr_"l Llar_

defledions 0.01

lint IIIQ Oll

cledlnatloe

some os ronge ro_

for _ SlmceHal

s_r,oiiltor 0.1
refroctlon 0.01

OrdenRo-

structure

deflexions 0.1

I_)UlII OIL

elevat_x_

<0.t6
0-$

<0.16
O.5

6O



•Figure 4. Miss at the Moon due to radio tracking errors

E. Results

In order to answer some of. the questions raised previ-

ously, 1-' malrices have been computed for a number of

different tracking situations. These matrices have been
computed using a digital-computer program, which is a

modification of the existing orbit-determination program.

The results from the modified program have been verified
using a scatter-diagram approach with artificial tracking
data.

The r_ults for a lunar trajectory will be described first.

The spacecraft is injected over the South Atlantic Ocean
near Ascension Island. The spacecraft impacts the Moon

66 hr after injection. It is assumed that while the space-

craft is on this trajectory, it is tracked by the mobile
station at Johannesburg, South Africa, and by the DSN
station at Goidstone. The characteristics of the data from
these stations are listed in Table 2. It is assumed that each

type of data is sampled once evcry 10 see. Figure 4 shows

the uncertainty, in the miss at the Moon due to radio

tracking errors. The abscissa .t is tracking time measured
from injection. The ordinate _, is the length of the semi-

m_jor axis of the 40 per cent probability ellipse of miss

components at lu,-har impa_. It. Fig. 4, the mobile station
tracks from shortly after injection m,til the spacecraft

goes out of range at t = 5.5 hr. The data from the mobile

station reduce ,_ to 13 kin. Goldslone acquires the space-

craft at t = 12 hr, and data obtained during the first pass
reduc_ X to 8. ° kin. If a mid-e_,urse maneuver is made at

son,_ time t = t_, the radio t: ,,, _.mg errors will contribute
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Figure 5. Miss at Venus and Mars due to
radio tracking errors

an error X(t_) to the over-all miss at the target. It can be

seen from Fig. 4 that the earlier the correction is applied,

the larger the tracking error.

Figure 5 shows the uncertainty in the miss at Venus and

Mars due to radio tracking errors_. The transit times on
these trajectories are 108 days for Venus and 177 days

for Mars. The curves in Fig. 5 are not drawn beyond 100

hr since the mid-course maneuver would normally be

made within the first few days. On the Venus trajectory,
the spacecraft is tracked from the mobile station and from

the DSN station at Goldstone for roughly the same time

periods as in the lunar case. However, the results for the
Mars tra_eetory a,e somewhat unrealistic in that the orbit

is determined entirely from Goldstone data. There is no

tracking from the mobile station, since the spacecraft
does not come above the horizon at South Africa until it

exceeds the maximum range of the mobile station. Actu-

ally, for this trajectory, it would be necessary to relocate
the mobile station (in Australia, for example) in order to

obtain early tracking data to predict Colds'tone acquisi-
tion coordinates. Of course, the added data wotdd also

improve X.

In Fig. 4 and 5, if the angle data from both stations are

omitted, there is a negligible degradation in the a(_a'aey
of orbit determination. The relative accuracy of the dop-

pler and angle data is such that the orbit is determined

almost entirely from the doppler data. If the angle data are

retained and the o in the range-rate data from both sta-
tions is increased from 0.15 meter/see to 1 meterlsee,
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Figure 7. Accuracy of orbit determination with

range clc:ta

_(20) is increased by a factor of about 3.5 for all three
cases. It has been observed in a number of cases that for

accurate orbit determination it is necessary to obtain
tracking data near injection. The data acquired in just a

few minutes at this time have a very powerful effect in

reducing A. If no data are obtained until several hours
after injection, A may be quite large.

The solid curve in Fig. 6 shows x(t) for a di_erent lunar
trajectory. The spacecraft is injected over Ascension

Island as in the previous ease. The spacecraft's closest

approach to the surface of the Moon (300 mi) occurs 51 hi"
after injection. In this case, it is ass,2.med that the range-

rate data from both stations have an accuracy ¢ of 1

meter/sec. The dashed curve in Fig. 6 shows A(t) when
there is a mid-course maneuver. It is assumed that the

mid-course maneuver is made at t, = 9 hr, although this

is not the optimum time. Because of pointing and shutoff
errors in the mid-course guidance system, there will be

some uncertainty in the direction and magnitude of the

velocity vector applied t(. the spacecraft. Using typical
values for these uncertainties, the orbit determination

degenerates at t,, as shown by the dashed curve in Fig. 6.

Subsequent tracking reduces A considerably. It may be

necessary to redetermine the orbit quite a_mrately after
a mid-course maneuver in order to calculate the impulse

for a retro-maneuver or as part of a scientific experiment.

Figure 7 shows the effect on the solid curve of Fig.
when range data from both stations are utilized in addi-

12

tion to angle and range-rate data. It is assumed for the

range data that ¢ = 10 meters and _-< 0.16 min. It can
be seen that range data are very useful in determining

orbits. Cucves similar to those of Fig. 4 through 7 can be

plotted for quantities other than ,X. For. example, the
standard deviation in injection conditions (the square root

of the diagonal elements of die l-' matrix) can be plotted

as a function of tracking time; or the 1-' matrix can be
transformed to other coordinates, such as uncertainties

in time of flight, velocity components at the target, etc.

F. Further Results

Figure 8 shows how the accuracy of orbit detmmina-

tion on the 51-hr trajectory varies with the magnitude of
the noise on the range-rate data. The ordinate of the

graph is A(_0) and the abscissa is the value of _ for the

range-rate data, ¢,_. The value of X at _0 hr is chosen
because considerations of fuel economy and component

error indicate that the optimum G is between 15 and 20 hr

for this trajectory. It is assumed that _; is the same for
both stations and that T < 0.16 rain. The noise in the

angle data is the same as that in Table 9..Note that in

Fig. 8, when ¢; = 1 meter/see, ,_(20)= 49 kin, which

agrees with the solid curve in Fig. 6. As _; becomes larger

in Fig. 8, the range data contribute less to the over-all
orbit determination. The curve approaches an asymptote

?,(20) = 1100 kin, which is the value of X(20) if only angle
data are used.
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Figure 9 shows the effect of varying the accuracy of
the angle data from each station. The value of o for the
low-frequency component of noise in hour angle and _oo
declination is o, and oh is the value of o for the low-

frequency component of noise in elevation and azimuth. •
The curves approach a lower asymptote because of the =c

other components of angle noise in Table 2. In Fig. 9, it o

is assumed that _; = 1 meter/see. If =,; = 0.15 meter/see ;" ,0o
had been used, the curves would approach the upper o

asymptote for even smaller values of o. and =,,.

It is instructive to consider how the accuracy of orbit
determination is affected by the quantity of tracking data. zo
Figure 10 shows the uncertainty in the miss at the Moon ='•
on the 51-hr trajecto_" as a function of the number of 8 ,o
radio tracking-measurements. The ordinate X is evalu-
ated at t,, which is assumed to be 20 hr after injection. •lar

The abscissa n is the total number of radio tracking
measurements taken in the 20-hr period. A measurement •
is any one observation of doppler frequency or a tracking
angle.'Since the total tracking time is constant, n is varied
by changing the interval between measurements.

Curve A of Fig. 10 shows _,(20) ,..hen the orbit is
determined using all of the t)3)es of data listed in Table

!
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It can be seen from Table 2 that the noise contaminating

the angle data consists of two relatively high-frequency

components and one very low-frequency component. It is

assumed here that the angle data will be smoothed some-

what before being used in the orbit-determination pro-

gram. This will eliminate the high-frequency components,

leaving only the very low-frequency noise. It is useless

to sample the smoothed angle data too frequently,

because the measurements will not be independent. It is

estimated that all of the nsefid angle information can be

extracted from 20 samples of the smoothed angle data

taken at eq,:al intervals over the tracking time. Therefore,

for curve A, n consists of 20 angle measurements; all the

rest are doppler measurements. If a doppler measure-

ment is taken every 10 see when the spacecraft is visible

from Johannesburg or Coldstone, the total number of

data points is n = 4400. It should be noted that as n

becomes large, curve A approaches an asymptote with a

slope of -_ Thus, for large n, >,(20) is proportional to

]/'V n. This is to be expected, since _,(20) is analogous to

the standard deviation of the sample mean.

Curve B shows A(20) vs n when the orbit is determined

entirely from range-rate data. It is assumed that the data

are sampled at equal time intervals whenever the space-

craft is visible from a station, the time intervals being

inversely proportional to n. Curw. B is a straight line, with

slope _1_ over the whole range of n-values shown in

Fig. 10. If curve B were extended to smaller values of n,

however, it would deviate from the straight ]inc.

Comparison of curves +A and B shows that, for small n,

the use of angle data causes a considerable improvement

in A(20). However, for the assumed doppler accuracy and

for large n, only slight improvement in ,X(20) result3.

Before drawing any general conclusions concerning angle

data, it should be remembered that Fig. l0 is drawn For a

particular trajectory. It is possible that the _acking

geometry in certain special cases could result in a require-

ment for angle data in order to resolve ambiguities in the

14 JJ



IPL TECHNICAL REPORT NO. 32-28

doppler data and insure rapid convergence of the orbit-

determination program.

For curves A and B, it was assumed that the observa-

tions were taken at equally spaced time intervals. Let

• (t) be the range rate from a station as a function of time.

It has been observed that a small change in the orbit will

produce a large change in the functional form of • (t)
during the first part of flight. This suggests that it may be

more e_eient to vary the interval between observations

rather than taking observations at constant intervals.
Curve C uses only doppler data, as did curve B. However,

in curve C, the data were sampled at a rate which de-

creased with increasing time. Comparison of curves B and

C shows that the tapered sampling rate results in a smaller
X(20) for the same total number of data points (n).

It might be expected from Fig. 10 that the accuracy

can be improved without limit by increasing n. Such a
conclusion is invalid ff all factors are taken into account.

The curves continue to decrease only if the contaminating
noise is random with zero mean. This means that the data

must be corrected for all systematic and bias errors.
Obviously, it is impractical to correct for all of these

errors, and a point will be reached where neglected sys-

tematic and bias errors will limit the accuracy instead of
the random errors. Also, it has been assumed that the

range-rate data are uncorrclated in time. Aetoally, there

may be some small noise component in the range-rate
data which is correlated over a finite time interval. For

example, tarbulenee in the atmosphere can cause local

variations h; the index of refraction which, in turn,

cause variations in the effective path length for the radi-
ation. The changing path length produces correlated

noise in the range-rate measurements. Thus, when n

becomes very large, the samples of range-rate data will
no longer be independent and X (20) will stop decreasing.

There are other practical reasons for limiting the value

of n: If too many data points are used, the computing

time required for a fit may become inconveniently long,.

It is estimated that three iterations using 4400 data points
at each iteration require 3 hr on the IBM 704 digital com-

puter. On the pass in which the maneuver is to be made,
adequate time must be allowed to acquire additional

tracking data, compute the orbit and correction, transmit
the commands, and observe the maneuver. It is conceiv-

able that the limited pr_ision of computation may cause
the least-square fit to deteriorate ff a very large number

of data points is used. However, investigations show that

this effect is negligible up to 8000 data point3.

For the interplanetary trajectories, an additional sourm_

of error is the uncertainty in the Astronomical Unit (AU--a
unit of length equal to the mean radius of the Earth's

orbit used for measuring distances in the solar system).

In the ephemeris, the positions of the planets are tabu-
lated quite accurately in terms of AU. However, at the

present time there is an uncertainty of the order of one

part in 2000 in the conversion factor from AU to ordinary

length units such as meters. This results in an uncertainty
of 21,000 km in the miss at Venus and an uncertainty

25,000 krn in the miss at Mars when the orbit is computed
from heliocentric injection conditions expressed in ordi-

nat3" length units. Note that this miss is not a random

variable but rather the upper limit of an unknog-n con-

stant. However, it is anticipated that the uncertainty in
the AU will be reduced in the near future by tracking of

space probes and radar-ranging to planets. Although there
are corresponding uncertainties in the physical consents

of the Earth-Moon system which would affect the accu-
racy of lunar trajectories, it is believed that these con-

stants will soon be known accurately enough so that they

contribute an error which is negligible compared to othe¢
errors.

IV. GUIDANCE SYSTEMS

Returning to the subject of mid-course maneuvers, as

distinct from orbit determination, possible schemes of
mechanization are summarized in Table 3.

Scheme 1 (Ref. 8) is especially suited to spinning pay-

loads since, in addition to providing the method of thrust
vector control, the spin provides a direction fixed in space.
However, it is found that to avoid excessive amounts of

propellant, the first of the two maneuvers must be made

shortly after injection (e.g., 1 to 2 hr on a lunar trajectory).
The orbit would not usually be determined sufficiently

Table 3. Passible mld-caurse guidance systems

Sd_ffllo

1

2

3

4

Termi_ll ¢oordineles
controlled

Impeh, e
ConttrQInts qm

mckot oriont_lem

Two miss components Vorloble (twice) _ Fixed dlructle_

Ilestrk'ted to m

p_Re

Two mlss COmll_nents Vorial_e

Two mlss components Fixed

Variable NoneTwo miss c_mponents

and either speed iw
time of orTivgl
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by radar-tracking at that time, and also, the spacecra,rt

may not be visible from the tracking site which has the

command capability. In the early stages of the NASA
space program, only the Coldstone site will have the

conamand capability, and spacecraft i,.jca._ed over the
f_u:_ ,t*l_,dic Ocean are n_ :%ibie from that site until

about 11 hours after injection (Fig. ¢).

In scheme o of Table 3, it was shown that both miss

components can be controlled when the rocket impulse

is restricted to a plane. For a given point on a given tra-

jectory, one plane exists (the critical plane) for which the
maneuver is a minimum; however, the impulse need not

be applied in that plane. In p_acttce it may be convenient

to restrict the maneuver to the plane perpendicular to

the Sun-probe line or the Earth-probe line. Thus, ff the

rocket is mounted to fire perpendicularly to the Sun-

probe line, then, in orienting the spacecraft and rocket
for the maneuver, one face of the craft (e.g., the face

carryi'ng solar panels) is never turned away from the Sun.

If the spacecraft and rocket could be oriented in any

desired manner, then scheme 2 (in the critical plane) or
scheme 4 would be employed. The authors have concen-
trated most of their attention on these schemes. Scheme

4 permits the greatest flexibility, since speed or time of
arrival may also be controlled. Subsequent discussions
refer to schemes 2 or 4 of Table 3 for a rocket mounted

rigidly in a space<raft which can be pointed in any

desired direction by command from the ground.

Except when the mid-course rocket is developing
thrust, attitude controI_ of the spacecraft may be accom-

plished with a system of gas jets for lunar missions; but

for longer interplanetary missions, the addit,2on of flywheel

control would be desirable. Provided the electrical power

comes from solar panels, the weight of a flywheel system

does not increase with journey time. Further discussion

of such attitude-control systems is, however, beyond the

scope of this report.

The ease of shutting off and restarting liquid-propellant
rocket moto., makes them attractive for mid-course

maneuvers. Thrust levels can be quite low (50 Ib), and

the lower specific impulses of monopropellants are accept-

able in simplifying the propulsion unit. A separate tighter

form of attitude stabilization would, however, be required

during hurning of the rocket, e.g., gimbaling the rocket

motor. Shutoff of the motor would he dependent upon

the integrated output of an accelerometer, mounted with

the sensitive axis parallel to that of the thn_st vector.

Apart from tracking considerations (Part Ill), the choice

of T (the time of application of the maneuver) is influ-

erJced by the magnitude of the correction as a function

of 7", and the effect of errors in applying the maneuver
(e.g., in pointing the rocket). The calculation of the mag-

nitude of the maneuver was presented in II-D, the result

being dependent on the xelative values and cross-
correlations of the injection errors, tlowever, it is inte,_st-

ing to note in Fig. 11, where the mid-course" maneuver to

correct one-at-a-time injection eJ'rors is plotted against T
P.,c a luna_ impact trajectory, that whereas some injection

errors should be corrected as early as possible, the opti-

mtun time for correcting other errors is some time after
iniection. It follows that the optimum maneu,er point

depends on the particular injection-guidance system.

g

t_t

t.i
Z

_E

1

,MpACT

I j

Ay-2 millrod

LOCAL VERTICAL

VELOCITY-VECTOR
, SPEED• V

j@.
_t'O) INJECTION

COORDINATES

Ax, I0,000 fl
-Aa "2 millimd

'L_4_,. 'lO._,

APPLICATION TIME AFTER INJECTION hr

Figure 11. Mid-course maneuver to coned

injection errors

By way of illustration, the rms magnitude of" the mid-

course maneuver is plotted against T/n Fig. 1_ (for the

Agena guidance system as used for Discoverer missions).

The ca]culations for this graph employed the statistical pro-
cedures presented in Fig. 2. The graph shows two curves:

One refers to the correction of miss components only.and

the other to the correction of miss components and flight
time. In the event that only miss components are o01"-

retted, the corresponding variations in lunar impact speed

and flight time are given in Fig. 13 (calculated by Eq. 43).
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Eq. 34 expressed in two different sets of units for con-

venienee of interpretation, "t being the factor for errors

in magnitude or direction. Fig. 15 shows the coefficients

_,_,/_¢, and _,_ of Eq. 36 for estimating the terminal speed

errors, the mid-course maneuver being one which controls

speed at the destination.

I t t.lOt _.110

I 1 _JO

t4

i il[,,,o.,,..,,-.oor..m°o.--.,..,h. _:Agena--Discoverer guidance system _,
DIREClX)NAL EFmORS

:*4 zo , _1Eq _, 331

!/'_ _ I 1 I _ Fiur, 14. th M nto
:EQ"SO _ " _ , ,_ _- errors in magnitude and direction of mid-course

/1/11 t I • m°o.v.

  J°""!!tltllll tll'°,, / ...... °' "
APPLICATION TIME AFTER INJE_ON, t_"

Figure 13, Variation of flight time and Impact speed

--on,,°,...o.,on..,....o .o.d,,o li llltti  maneuver in the critical plane Itralectory and oon ,,

guidance as in Fig. 12) _15o_o [ _)_\ I J J . I |,, I_

In estimating the effects Of errors in applying the.,o_12oool_\_"'",_.._, 11,,_lmaneuver, the authors have, in the final analysis, resorted
to evaluating upper, bounds of the errors (from Eq. 30). _1_ I I k_.-_m_'-_ 1 I 1 I:

However, in preliminary studies it is much more con- _ I -_,__ _ _-
venient to use the approximate formulas derived in II-E. _ ol _ ; I _] _ 10,
Statistically averaged coefficients were deduced which

relate errors in the direction and magnitude of the ma- _-,. [[![!!!!!_]
1

neuver to miss at the destination. These coe_cients are
APPLRA'DON TIdE _ ICJIS_n0N.

plotted in Fig. 14 and 15 against application time of the

maneuver for a 66-hr lunar-impact trajectory. The maneu- Figure 15. Coefficients relating speed at the Moon to

vex implied would be to correct miss components and errors in magnitude and direction of mid-course

speed at the Moon. Fig. 14 shows the coefficient _ of maneuver

17
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V. CONCLUSIONS

Radio-command mid-course guidance is regarded as

having great potential for future lunar and interplanetary

missions. It is suitable for ensuring impact on a small, pre-
selected area of the surface of the Moon for guidance

prior to the creation of a lunar satellite, and for sending

areeoverable space probe around the Moon and back to

Earth.-Futbermore, provided the measure of the As_o-

nomical Unit is improved, such guidance will ensure

approaches within 10,000 mi of the planets Mars and
Venus.

Examination of Fig. 11 through 14 reveals that unless

the maneuver is made within the _st hour after injection
(and this would not usually be possible) the choice of the

maneuver point is not critical. It can be made within the

_st 100,000 mi of a lunar flight o¢ the Rrst few million
miles _ an interplanetary flight.

It is perhaps instructive to quote estimates of the
accuracy that might be achieved with a single-impulse,

radio-command, mid-course guidance system. Illusb-ative
results are presented in Table 4.

Table 4. Representative figures for the accuracy of mid-course guidance {rms quotations of .rrors)"

Destination
Orbit

determinatkm

miss, n_

Moor. 7

Mors 1500"

Venus 700"

22

357O

1970

Assumed
#rror

ft/tec

M_s$

nd

22

357O

t970

Co, ffkkmt Aswmod M_

ml/ckql *net mJdes

31 0.5 19

6230 0.5 3115

O.S 171S

Te_II
mi,-
lid

3O

5OOO

270O

+Cq_rrection _n tho ¢riticol plane far mlsl _mpona_tm tmiy.

*It is crssum_¢ thcH' the un¢_rtr_inty in the AstTOnorn|c_i Unit will be rtcl._ltd J_ the rmar futv_ by morn _ one _ of mog_}t_lle (l_f. 9). Otherwlee, _

at Marl ond Venus wo_lcl be of the order of 15,000 ml (for 1 in 2000).

APPENDIX A

Correcting Velocity Components

The coordinates z2, F2 and z2 on a ballistic trajectory
at any t_ne t2 are functions of the coordinates x,, g,, z,,

x_, y_, and z, at any prevqous time t,. Hence, by taking

only the fL,'St-order terms d a genera_ized Taylor
sion,

ax2 - _x2 - _x2 . _x2 -. _x2

(^-0

and, similarly, for _g, and _z_, where the perturbations
are to be interpreted as coordinate variations from a

standard trajectory. In addition to the six _ dinnte per-

turhations _t Hme t,, let a further perturbation be added

in the form of an imp_e of velocity with component_

V,, V,, and V,, such that

_x _x 8x_
- -_ v - v, (^.z)

and, similarly, for _g, and a_. The net result will then be

that _r, = _g, = _z, = O, since the applied ve]c>city per-

ti_rhation will exactly cancel the effects of the six coordi-

nate variations at t_ne tz. Equation l is a statement of this
result in matrix nota_on.

18
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APPENDIX B

Minimization of the Magnitude of the Maneuver

Equation 4, written out in full, is

- M, = _,, V, + k,, V, + _,, V,

- M. = _,, v. + _**v. + _. v. (s-0
where V,,Y U,and V, aret3be chosen to minimize

subjectto the two equations.The problem issolvedby

analogywith the problem inthree-dimensionalgeomeb-y

of calculatingthe vector(drawn from the origin)perpen-

dicular to the line of intersectionof the two planes

definedin Eq. B-I,regarding the velocitycomponents as

rectangularcoordinates.

The normals to the two planes of Eq. B-1 have dixee-

tion cosines proportional to kn, k_2, kl, and k,n k=,/r_,
respectively. The line of intersection of the two planes

has d/rection cosines proportional to

(u,, + i,_,,+ t,L,) × (u,l ÷ it...+ k,_,,) (B-:,)

and the vectors Tv',_ I'V,, and kV,, the magnitude of which

is a minimum, must be perpendicular to the vector of

Eq. lg_ Hence,

(w. + iv, + w.). [(i_,, + iC, + ,u,,d
x (a., + ik,, + _,,)] = o (e-3)

The scalar triple product of Eq. ]3-3 can be wri_

,_,, _.. I_, =o (13.4)

v. v, v,
or

K,_ V. + K,, V_ + Kn V, = 0

where K,_ is the cofactor of the dement hs-

(s-5)

.'7"

APPENDIX C

Probability-Density Function of the Magnitude of the
Mid-Course Maneuver

If the fundamental error sources during boost gui_mee

are gaussian, then the six injection errors satisfy a s/z-
dimensional gaussian distribution, and the velocity com-

ponents u_ and u, of II-D satiffy a two-dimensional The_

distribution (Bd. 4).

Let

:] ,o,,
Then the probability of the velocity components being

between u, and u, + du_, and uffiand u_ + du. is

du,dN_ ..][; :Y[::]} _
(c-2)

By an appropriate rotation of the ux, _ axes, the

moment matrix may be disgonalized, such that

(-+,,
P, = _ exp\ 2;_[ 2X:./

where

x;= ½(,+ b)+ +_

x_=½(,+O-._\ 2 / +b'

(c-3)

(c4)

= usin 0 J

Now let

.,-o r "°'ql (c-_)

and the probability of the maneuver being between u and
u+ duis

=/%,do=[-Jo "=^.'_J. L -_-"/cos'0L_ + -)Jsin* 0\'] dOP.

,,a,,. ,..p [ _ _(_,;, + v)]

wbem

(c.7)

.(c.s)

: = T(x; - _,-,) (c9)

÷ = 20
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The integral in Eq. C-8 is a BesseJ function which is

tabulated (Rd. 10)

xdx [ _2 ]P"= _-_P - T (hi' + _;') I. (ix)

For convenience, substitute

k

_A,A,

(c1o)

(c-n)

,, = _- (,,> I)

n Being the ratio of the major to minor axis of the dis-

persion ellipse in the u, u_ plane.

The probabiLity-density function is the_:

¢d¢ exp [- -_(n_" + n -l)IJ* (ix) (C-12)

whore

x = 4_ (n -- a-')

This function is plotted in Fig. C-1 for three different
values of n. The mean-square maneuver is

,_ = x,x, - (- + --') lo(iX)#¢ (c-13)

Let u, be the maneuver which includes 99 per cent of
all cases. The_,

1o.o]= Cexp --_-(,,+,,-') lo(ix)a¢ (cq4)

OJl_l

OM

041

0.40

0.24

p-

O.II

O.OG

N

/\\

I
0 I

Figure C-1.

a, RAT|O OF MAJOR 70 MINOR :
AXIS OF OeSPERS_N ELUPS[
OF VELOQI"Y COMPONENTS IN!_
MANEUVER PLANE

Z 3 4 5 • ? • • I0

D_M_ SPG_.+

Probability-density functions of

• magnitude of a mid-course maneuver when

restricted to a plane

By evaluating numericall) _-' the integrals (C-13) and
(C.-14), the ratio

B I

"= V-_ (c-m

has been calculated for three different values of R

(Table 1).

APPENDIX D

Computation of the Orbit From Radio Tracking Data

The coasting orbit is completely specked by the injee-
tion time and six injection parameters. The six injection

paPameters are denoted by X_, where /= I, 2,...8.
One possible set of .injection parameters was defined in

III-C. Sin_ the orbit is completely specified by the X_s,

so is any observation of the orbit by an Earth-based radio

tracking station. Let ¢ be any One measurement along the
orbit (e.g., range rate from a cep.am station). Then,

_, = 1,(x,. x, • • - x.; ,) 0>I)

where t is the time" of ol_servation. By the Taylor expan-
sion. neglecting second- and higher-order terms,

cqua I. (ix) - e

'!k
¢, =/, (x_. x.- •. x..;,) + E a," [ 8x, 03-2)

,f=* "t IXta

where the subscript S refers to the value on the stanchmi

trajectory and 8Xj = Xj - X. is the perturbation in the

injection conditiom. From Eq. D-2,

8¢, = _, - ÷,. = . aX,I*.

Equation D-3 is rewritten,' using matrix notatitm

03-_)

8¢, = U, aX 034)

2O
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where

and

]Ui L_ C,I',,, i.

,x =F,x, 1
/'x,/
/'x,/

/ (o-0

L S×, J

Note that Ui is evaluated at the time when the ith obser-

vation is made.

The use of linear perturbation theory is just/fled for

approximate calcu]ations, because the injection guidance

is accurate enough to inject the spaee_Mt ona coasting

orbit which is close to the standard trajectory. Where

extreme accuracy is required, linear perturbation theory

can be used to obtain successive approximat:.'ons for an
exact iterative solutioa.

Now, let _ be a column vector of all measurements *d

any type of data from any station. Suppose that the total

number of mea_.:rements is m and, therefore, i = 1, 2,

... m. Equation D-4 becomes:

a¢, = USX (D-7)

where 8_ is now an m X 1 column vector and U is now

an m × (3 matrix of differential coefficients. Vector a_

represents the coordinates that would be measured by

perfect instruments. Actually, the measurements are con-

taminated by noise, and the coordinates a// are observed
where

where

(D-9)

LN.J

N being the noise comlxment on each measurement. It is

assumed that _ is corrected for all systematic and bias

errors.

It is also assumed that these noise components are

associated with a muhivariate gaussian distribution with

probability-density function.

I

p (N) = li' (2_r).. _ exp (-_j Nrg-' N)l_l (D-to)

where K is the noise moment matrix of all m measurement

errors. Substituting Eq. D-8 iato 1)-10,

1

/, (N) = "V(2,,)- IK i Cxp[ -,} (_t - a$)"X-' (a,'- a,/,)]
(V..)

Computation of 8X by the method of maximum likelihood
(Bef. 11) consists of maximizing p (N) or, what amount_

to the same thing, minimizing:

(a_ - lh/,)rg-, (g4[ - all,) (D-II).

Differentiating Eq. D-12 with respect to _X_, and sett_g
the result to O,

a(sx,) [(_ - 8¢,),g-, (8_- a+)] =

- uL K-, (_t - usx) - (a_- usx), x-, u,, = o
(D._3)

where U, is the first column of U and thus, an m X 1

column vector. Simplifying Eq. D-la,

UT. K-' UaX + aX r U r K-x U. = Lr_. K-' 8_ + Stir K-" U.

(D-14)

Equation D-12 is differentiated with respect to each of the

other injection perturbations, and the result is set equal
to zero to obtain five more equations similar to Eq. D-14.

Combining all six of these equations into one matrix"

equation,

U" K-' V_X + [ _X" U" g-' W]" = _ g-" at. + [ 8_."g-" V]"

(D.15)

Since K -t is ..'ymmetrical,

[trr K-, tr]r = Urg-_ U

Equation D-t5 becomes

or

where

and [g-, u], = U"x-,

U r K "_UaX = U r K "l a(

ax = I-' _ x-, at Oo.t,)

] -- UrK -, U (D-17)

Equation D-16 gives the solution for themaximum-

likelihood estimate of the injection perturbations in terms
of the measured coordinates.

The K-matrix in Eq. D-17 is the moment matrix of the
noise in all m radio tracking measurements. Thus, K is an

m X m s)anmetrical matrix, where m is the total number

of measurements and may be as large as several thousand.
Such a high-order matrix would in general be very di_-

cult to invert. However, as will be shown, the K-matrix in

this problem can be approximated by a diagonal matrix.

2!
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Let K,c be the dement in the rth row and cth column of

K. "_Vhcn r = c, K,c is the variance of the rth measure-

ment; otherwise, K,_ = K¢, is the covarianee between
the rth and cth measurements. If the rth and cth measure-

ments are observations of the same variable at different
times, then K,_ is the value of the autocorrelation func-

tion between the two times; otherwise, K,c is the value of
the cross-correlation function between the two times.

It is assumed that there is no correlation between
measurements at different stations and between measure-

ments of different types at the same station. Because of

the assumption of no cross-correlation, it is possible to
partition K into a diagonal matrix of submatrices. Each

submatrix K_ is the noise moment matrix for the ;tab type

of data from the qth station. Each U is also partitioned
into submatrices Us*, which contain differential coefl;-

cients for the pth type of data from the qth station. Thus,
Eq. D-17 becomes

= r -' Us, (D-lS)] U rK-'U=_Us*K_
P,q

where ] is now the sum of a number of elementary
l-matrices, one for each type of data from each station.

With some further asmmptions, Km can be approx-
imated by a diagonal matrix. It is assumed that each type

of data from each station is contaminated by n independ-
ent noise sources. Each noise source is assumed to have

the following idealized autocorrelation function:

P_ (t) = ¢r=,for 0_-: t__ r,
(o-19)

R,(t) = 0 fort > r.

That is, the noise is perfectly correlated over an interval

r. rain and is uncorrelated over any lar:;er interval.

Assume that the data are sampled at equal time intervals
at a rate of J. samples per minute.

$,={_ " if''" _- 1 (D-20)if f,r, < 1

Where S, is the number of dependent samples in one cor-
relation interval. It can be shown that if the elements of

Us* change slowly from one sample time to the next
(i.e., there aremany samples), then

I._mK_U_ _--C. Lm_ U. (D-21)
where

Ct_ = (_ os. 3".)g (D-22)
w

The weighting factorCm takes intoaccount the magni-

tude and time correlationof the differentnoisecomlxm-

ents.For example, ifthereisonly one contaminatingnoise

source,C = (o_S)-Land S samples of the data must be

taken tohave the same weiRht asone sample ofvariance
o_ ifthe noisewere uncorrelated.

It can be seen that by using Eq. D-18, D-21, and D-2,q,
the K-matrix has been approximated by a diagonal matrix.

The elements on the diagonal are Cm-*. In the JPL orbit-

determination program, the/-matrix is 4c,"ually calculated
as follows:

I = X c,, [X u: u,],, (D-23)
pq a

The Ui matrix is the 1 × 6 row vector defined in Eq. D-5,

where J_ is now the ith observation of the pth type of data

from the qth station. The term in brackets in Eq. D-23 is

equal to U _ U_. Once K -_ is approxima_:ed by a diagonal
matrix, the method of maximum likelihood becomes the

same as the method of least squares. The important di_er-

ence is in the weighting functions, which account for the

correlation in the noise. Thus, using least-square fitting,

the expression to be minimized is

E-"= (8¢ - 8#)r K-' (8_ -- 8q,) (13-24)

where K -_ is diagonal with elements C m.

To attain the required accuracy in determining iX, the

following iterative Froeedure is used. The injection condi-

tions on the standard preflight trajectory, ate used for the

first iteration. For the second iteration, the preflight

standard injection conditions are corrected according to

the 8X/s obtained by solving Eq. D-17 in the gust itera-

tion. The procedure is repeated until the 8X/s are negli-

gible. It is assumed that the preflight standard is dose

enough to the actual trajectory so that the method will

converge. Normally, sufl/cient accuracy is attained with
3 or 4 iterations.

It will now be shown that the 6 X 6 symmetrical

matrix 1-' specifies the uncertainty in orbit determination

due to tracking errors. Substituting Eq. D-8 into D-16,

8X = I' Ur K-' _¢ + 1' V_ U-' N 03-25)

The second term in Eq. D-25 is the uncertainty in 8X due

to noise on the measurements. Let this term be 8X.:

8X. = ]-t//r K-t N

Then,

8x. tx'i. = l ,V_ K, me, K ,, Ul ,, (D-27)

Taking the ensemble average of Eq. DJZT. noting that

NN r -- K, and using Eq. D-17,

aX. aX r =/-t (D-28)

That is, ]-_ is the noise moment matrix of the uneertainties

in determining the injection conditions. It depends on the

differential corrections and on the stat/_.+ical characteHs-

ties of the noise contaminating the radio tracking data.
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